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Quaternionic-like bifurcation in the absence of symmetry 
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Abstract. We give some results concerning the existence of bifurcating periodic solutions 
of non-linear time evolution equations with the property that criticality is produced by a 
couple of imaginary eigenvalues with double multiplicity. This situation is also compared 
with the classical Hopf case and with the 'quaternionic bifurcation' occurring in the presence 
of a SU(2)  symmetry. 

1. Introduction 

It is well known that the Hopf bifurcation is the simplest mechanism which has the 
appearance of periodic motion bifurcating from stationary solutions of non-linear 
evolution equations. The typical condition for the occurrence of this phenomenon is 
that, for some critical value A,, of one 'control parameter' A,  two eigenvalues of the 
linearised part of the equations cross the imaginary axis (see [ 1 - 51). 

In this paper we present some results generalising this problem: we will deal with 
the existence of bifurcating periodic solutions of equations of the following type 

x = f ( A ,  x )  (1) 
where 

X E  R " , x = x ( t )  h E R P  

with the main property that criticality is given by two imaginary eigenvalues with 
double multiplicity. 

A special case for this situation occurs when one can reduce the original problem 
(1) into a four-dimensional equation which exhibits a covariance property under a 
particular representation T of the symmetry group SU2.  This case has been already 
considered [ 6 , 7 ]  and will be briefly mentioned here in 0 3: due to its peculiar group- 
theoretical structure, it gives rise to a specific bifurcation which is called the 'quatern- 
ionic bifurcation'. For this reason, and because the group-theoretical frame reveals it 
to be useful even when the SU2 covariance is not verified, we have called the 'quater- 
nionic-like' bifurcation this general case 'without symmetry', which will be considered 
in this paper. 

2. Statement of the problem 

Let us consider ( l ) ,  where 

f : R P x  R " +  R" and f ( A ,  0 )  = 0 
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with usual regularity assumptions, and suppose that for some value A = A,=  
(Aol , .  . . , A o p )  of the control parameters the linearised part o f f  (the prime means 
differentiation) 

L ( A )  =f:(A, 0) (2) 

possesses two complex conjugated imaginary eigenvalues, say *iwO( w 0  > 0), each with 
multiplicity two (and then the corresponding real eigenspace is four dimensional). 

Assumption A. The eigenvalues f iw ,  of L(A,) have both algebraic and  geometrical 
multiplicity equal to 2. No other eigenvalue of L(AO) is a multiple of +iwO. 

After introducing, as usual, a new real parameter w in such a way that, rescaling the 
time variable t :  

t + r = w t  (3) 

(with w = w0 when A = A,,) one has to look for solutions with period 27~,  let us embed 
the functions x ( r )  in the space L2((0,27r),  R " )  equipped with the scalar product 

( x ( r ) ,  ~ ( 7 ) ) ~ '  = lo2v dT(X(T), ~ ( 7 ) ) ~ " .  

Assumption A implies then first that, by means of a linear transformation in R",  
the operator Lo = L(ho)  can be put in the form 

l o  1 0 o\  

0 0 - 1 0  

and that the kernel V in L2((0 ,27r) ,  R " )  of the operator 

MO= M ( A o ) = w o d / d ~ - L ( A o )  

is the four-dimensional real space spanned by the vectors 

e l = l s i ! r ]  e 2 = [ c o i r ]  e . = [  cos 0 7 e 4 = [  sin 0 P ] 
(clearly, this is the explicit form of the vectors in the basis in which L(AO)  has the 
form (4), and the remaining ( n  -4) components equal to zero are neglected). It can 
be useful also to remark that one can also write, e.g., 

cos r sin r 0 0 

( 5 )  

-sin r cos 7- 

e ,  = Re [ i] e" = exp( K17) E] 
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in particular e x p ( K , ~ )  = I cos r+  K ,  sin 7. Again, assumption A shows that V is also 
the kernel of the formal adjoint 

M :  = -wod/dT - L,' 

and that 

L2((0 ,2 . rr ) ,  R " )  = VO W 

where W is the range of M O .  Then standard Lyapunov-Schmidt procedure 11-31 can 
be used, and writing x( 7 )  = u ( r ) +  w ( r ) ,  with U E V, w E W, one obtains, from the 
projection on W of ( l ) ,  that w is a function of A and U 

w = w(A, U )  

such that, as is well known, 

w:(Ao, 0) = w:,(Ao, 0) =O.  

This allows us to neglect-at least when we analyse only terms which are linear in 
( A  - A o )  and u-the ( n  -4) components x 5 ( r ) ,  . . , , x , ( r )  in ( l ) ,  and  then reduce the 
problem ( 1 )  to the subspace L2( (0,27r), R4), namely to consider the following problem: 

w d u / d r  = f ( A ,  U )  . f :  R P  x R4+ R4 U E  R4 (6 ' )  

(having also used (3)),  with in particular 

f : ( A o ,  0) = L(An) = W O K ,  (6 " )  

where we have used the same notation for f and L ( A )  as above also for the quantities 
reduced to this subspace. 

We shall examine in the following some cases in which the existence of bifurcating 
periodic solutions of (6) is ensured. 

3. Bifurcation theorems: I. The SUI symmetric case 

An hypothesis which ensures the existence of bifurcated periodic solutions has already 
been considered [6-71. For completeness, and  in view of the following discussion, let 
us briefly recall some relevant properties of this case. The hypothesis amounts essen- 
tially to assuming that the original problem can be suitably reduced to the following 
form 

li = F(A,  U )  U = U( t )  U E  R4, A E R ( 7 )  

F ( A ,  T(g)u) = T ( g ) F ( A ,  U )  

in such a way that the map F :  R x R4+ R4 is covariant 

with respect to the four-dimensional real irreducible representation 7- of the group 
SU2, which is generated by the operators +Hi ( i  = 1 ,2 ,3 ) :  

0 1 0  0 0 -1 0 1 0  

H,= I-' 0 0 0 - 1  &] H2=[: 0 -1 0 H 3 =  [-! 0 0 0  '1. 
0 0 1  0 0  0 - 1 0 0  
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As discussed in references [6,7], this is a ‘quaternionic type representation’ [ 8 ] :  in 
fact, the centre of T, i.e. the space of the operators commuting with T (and then with 
H i )  is four dimensional. As a basis for this space, we choose the following ‘intertwining 
operators’ 

(9) 
0 -1 0 

K 3 = (  A\. 
0 - 1  0 0  

As a consequence of covariance, one has in particular that (the sum is implicit over 
repeated indices a = 0, 1 ,2 ,3)  

L(A)  = Pa@)K,  (10) 

which in fact has double eigenvalues, given by 

and the case considered in this paper is obtained if po(Ao) = 0 and p i (ho )  # 0 for at 
least one index i = 1,2,3. Referring to [6,7] for details, one sees that in this case the 
problem has bifurcating periodic solutions, which can be written in the form (here 
and in the following, sum over repeated indices i = 1,2,3) 

sin wt 
U( t )  = r exp( viKit)6 = r 

w 

where 6 is any unit vector in R4, vi are suitable functions of 

r2 = (U( t ) ,  U( t ) ) R 4  = constant 

and 

w = ( V i V i ) l ’ 2 .  (13) 

In this problem, of course, only one control parameter A (i.e. p = 1) is needed, but 
three other real parameters vi are naturally introduced to describe the solution. 

4. Some remarks on covariance properties and the standard Hopf problem 

The situation considered in the previous section can be compared with the classical 
Hopf bifurcation problem: it is known in fact [9,10] that the intrinsic SO2 covariance 
of the Hopf problem produced by time translations 

7 + 7 + 7 ’  (mod 2 7 )  

and the periodicity requirement consequently means that the equation obtained by 
means of a standard Lyapunov-Schmidt procedure displays a ‘temporal’ [ 101 SO2 
covariance, operating in the real two-dimensional kernel of the linearised problem. 



Qua tern ion ic-like bifurcation 83 

In  the general four-dimensional case, instead, we are not able to give a priori some 
dynamical condition which could induce a SU, covariance: in fact, in the above section, 
this covariance was introduced as an explicit assumption. This suggests the problem 
of examining the possible existence of bifurcating solutions even if this covariance 
requirement is eliminated (or  suitably substituted). 

Actually, there are some other strong differences between the Hopf case and the 
present one, which will emerge in the following, and which make the problem more 
difficult. 

First of all, let us write the Hopf equation in a form analogous to ( 6 ) ,  having used 
similar arguments (and the same notation): 

w d u / d r =  f ( A ,  U )  U E  R 2  f :  R x R2+ R 2  

where now 

Using the Lyapunov-Schmidt method, the linear part of the reduced bifurcation 
equation has the form, with obvious notation, 

L,(A) = a ( A ) I +  b(A)J  a(Ao) = 0 b(AO) = WO (14) 
as a consequence of the SO, covariance already mentioned, and in particular of the 
property that in this case the centre is two dimensional and generated by Z and J. In 
addition to this fact, let us remark that 

(i) the operator J maps the two-dimensional kernel V of d/dT - J into itself; 
(ii) for any non-zero vector U E  V, the vectors Zu and J u  are a basis for V; 
(iii) the linear span of the orbit, exp(JT)G, under time action, of any non-zero 

vector G E  R 2  gives the whole space V, so all vectors in this space are equivalent. 

5. Preliminary results 

Let us return now to (6) and in particular to the linear operator L ( A )  

L ( A )  = f u ( h ,  0) 

with L(Ao) = w o K , ,  and introduce the subspace W , ,  orthogonal to the kernel V of 
( d / d r  - K l ) ,  of vectors in W having ‘frequency l’, i.e. the four-dimensional subspace 
of W generated by (cf (5)) 

One can show, by means of some simple algebra, the following lemmas. 
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Lemma 1. The operator L(A)  can be written as a sum of two terms 

L ( A )  = L,(A)+ L ( A )  
where 

L , ( A ) :  V +  V i ( A ) :  V-, W , .  

The operator L,(A) can be written as a combination of 

1, KI 9 H , ,  KIM = HIKI ( i = 1 , 2 , 3 )  

where K ,  and H, are defined in (8) and (9) ,  whereas L ( A )  is a combination of 

K2,  K, ,  K , H , ,  K , H , .  

If the terms proportional to K,H, are absent, the eigenvalues of L ( A )  are purely 
imaginary, but in general the double multiplicity of the eigenvalues *iwo of L(Ao) is 
removed for A # A o .  Precisely, the eigenvalues of the combination 

POI + MI + y lHZ 

are 

PO f i(P,P,)I'2 * i(%%)"2. 

The terms proportional to K,H, give a real part to the eigenvalues, which take the form 
a *iw and -a  +iw. 

Lemma 2. For any non-zero vector 6 E R4, the four vectors K,v* ( (Y = 0,. . . , 3 )  are 
linearly independent. The same is true for 6, Hi6. Instead, there are vectors U ~ E  R4 
such that, e.g., K , v o =  H , v o .  

The last remark in lemma 1 shows that the presence in L ( A )  of terms K,H, can 
exclude, or at least make problematic, the stability of a possible solution of (6). We 
then assume, both for simplicity and  for providing a necessary condition for stability: 

Assumption B. The part L,(A) of L ( A )  is a combination of the following type 

L,(A) = a ( A ) I + w o ( l +  771(A))Kl+ y , ( A ) H ,  

where a, q l ,  y t  are smooth functions of A vanishing for A = A o .  

Let us get also the following useful tool. 

Lemma 3. Let @(A,  U )  be a smooth function 

@ : R m  x R m +  R" 

with @(A,  0) = 0 and, for some A = A o ,  @:(Ao, 0) = O .  If there is a (unit) vector 0 E R" 
such that the m vectors defined by 

are linearly independent, then the equation 

@ ( A ,  U )  = 0 
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has a non-zero solution, which can be written 
U = sv^ 

A i  = Ai(s) with Ai(s) + Aoi for s + o  

where s is a real parameter defined in a neighbourhood of zero. 

ProoJ: First, we write @ ( A ,  U )  = P(A, v ) u ,  where P is a rn x m matrix, with P(Ao, 0) = 0; 
putting then U = s6, equation @ = 0 becomes (s = 0 is the trivial solution) 

P(A,s6)6=0 

where 6 is fixed. From the given hypothesis, (&’(Ao, O ) / a A , ) v ^  are independent vectors. 
Then an easy application of the implicit function theorem gives the result. 

6. Bifurcation theorems: I1 

After this long preparation, let us finally consider (6) and apply to it the standard 
Lyapunov-Schmidt procedure. As already observed, the kernel of the linearised part 
d / d r -  K ,  is four dimensional, and then one will find in general four independent 
equations to be solved: this makes it reasonable that, in addition to the parameter w, 
one has to deal with three parameters A = ( A , ,  A, ,  A3) .  On the other hand, apart from 
the SU, symmetric case, the general case, in which only one control parameter A E R 
is present, has already been considered and  solved in detail [ 111. 

It can be useful to compare the present situation with the Hopf case. In particular, 
note that the SO, covariance under time translations gives in the present case only the 
condition that L,(A) has to commute with K , ,  the operator which plays here the same 
role as J in the Hopf problem: and just this condition in the Hopf problem was 
essentially sufficient for determining both the form of the operator Lv (see (14)) and  
the number of parameters ( A  and w )  necessary for solving the reduced equation. 

We can now state our main result. 

Theorem 4. Let us consider ( l ) ,  or assume directly (6), together with A; suppose now 
that p = 3 ,  i.e. A = ( A , ,  A2,A,)e R 3 .  With the notations of lemma 1, let L, (A)  satisfy 
B. Then, for each unit vector C E  R4 such that the following four vectors 

and 

K ,  v^ 

(where the derivatives are evaluated at A = A,) are linearly independent, a periodic 
solution bifurcates at A = A o ,  of the following form 

x ( r , ~ ) = ~ e x p ( K , r ) U * + w ( r , ~ )  

r = w t  

w = w , + w ” ’ ( s )  

AJ = A, + A ~ ” ( s )  

where s is a real parameter defined in a neighbourhood of zero, and  

l ims-’w(r,  s ) = l i m w “ ’ ( s ) = l i m ~ : ” ( s ) = ~ .  
5 - 0  s-0 s -0 
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Proof Applying the Lyapunov-Schmidt method to ( l ) ,  o r  to (6), and  observing that 
in the kernel V one has d / d r  = K , ,  the reduced equation obtained from the projection 
on V has the form 

having used also lemma 1, and  where the higher-order term h ( A ,  w ;  U )  is such that 

h ( A ,  w ;  0 )  = 0 

Then, if Lv satisfies B, all hypotheses of lemma 3 (with m = 4 )  are verified whenever 
G is chosen as prescribed in the theorem, and this concludes the proof. 

Note, finally, that in the three-dimensional manifold of unit vectors 6 in R4, the 
orbit exp( K ,  7) G describes a one-dimensional submanifold; therefore, we can conclude 
that there is in general a double infinity of independent bifurcating periodic solutions 
of our equation, which can be obtained choosing different vectors 6 in theorem 4 (see 
also lemma 2) .  

As a simple example, in which all the above results can be easily verified, one can 
consider the case 

a ( A )  = A ,  Y I ( A )  = O  

Y ~ ( A  1 = A z  Y 3 0 )  = A 3  

where all hypotheses of theorem 4 are satisfied, for any G E  R4. 
The peculiar differences between the results presented above and  the classical Hopf 

case now appear clear: compare especially lemma 1 and  theorem 4 with the remarks 
in 0 4. 

7. The Lyapunov-Schmidt method in the SU2 symmetric case 

We have seen in lemma 1 that the operators K 2  and K 3  map V into W ,  (and, similarly, 
W, into V), e.g. one has, directly from the definitions, K , e ,  =f4 and K 3 f 4  = - e , .  
Therefore, the linear part of the bifurcation equation obtained via Lyapunov-Schmidt 
projection cannot contain these operators. What happens then if the original equation 
is covariant with respect to the group SU2 as assumed in § 3 ?  In this case, the linear 
part of this equation has the form given in ( lo) ,  and so the linear part of the 
corresponding bifurcation equation obtained by Lyapunov-Schmidt projection is 
expected to be a combination of I and K ,  only. Actually, one discovers that, in this 
case, the projected bifurcation equation is identically satisjed, if only the condition 
(see (12)) 

(U, U ) ~ J  = r2  = constant 

is imposed. In fact, let us write the SU,-covariant equation ( 7 )  in the form (we assume 
without loss of generality that L(Ao)  = w o K l ;  here and in the following, sum over 
repeated indices a = 0, 1 , 2 , 3 )  

d u l d t  = w d u / d r = w , K , u + l l , ( A ) K , u + h u ( A ,  r ) K , u  (16) 
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where A E R ,  7, vanish for A + A o ,  and h, are given higher-order functions with 
h , ( A , O ) = O  (a =O,. . . ,3). Put 

7 d A )  + h o ( k  r )  = 0 

which is precisely the condition (U, U )  = r2  = constant, and 

V ]  = WO+ V I  + h ,  V 2 . 3  = 7 2 . 3  + h 2 , 3 .  

Projecting now (16) on W, and V (in this case in fact the whole solution (11) belongs 
to V O  W , ,  then U = U + w, ) ,  and observing that 

d / d r  = K1 in V and d / d r  = - K ,  in Wl 

one has from the projection on W ,  and V respectively 

- ( w + V I )  Kl W I  = ( u ~ K ,  + ~3 K,)u 

and 

( W  - v I ) K ~ u  = ( ~ 2 K 7 +  v ~ K ~ ) w I .  

Substituting in the last equation the quantity w I  taken from the preceding one, the 
bifurcation equation is 

( W  - v I ) K 1 v  - ( U  + v I ) - ' (  vi+ ~ f )  K1 v = 0 

which is identically satisfied for all U, if viv, = U * ,  just as in Q 3. This is quite different 
from the Hopf case, due  to the fact that there the centre is two dimensional and to 
the properties listed at the end of Q 4. 

8. Bifurcation theorems: I11 

Another question however may be posed. Let SU, act on the space V through its 
representation T already considered: then, there are certainly four intertwining 
operators K z ,  mapping V in itself and commuting with this representation: what is 
the form, written in the space V, of these operators? One can directly obtain this form 
writing both the group action and the intertwining operators with respect to the basis 
{ e , }  (s = 1, . . . ,4) of V given in (5). Alternatively, one can observe that the operator 
R of time reversal 

( R u ) (  t )  = U( -1) (17) 
maps V into W ,  and vice trersa, and obviously commutes with the SU2 action. Therefore, 
four operators mapping V in itself and commuting with SU2 are 

1, Kl,  K2R, K3R. 
As a consequence of this fact, one gets the following result. 

Theorem 5. Let in (6) A E R4 and f:(A, 0)u = L ( A ) u  be of the following form (a = 
0, . . . , 3 )  

L( A 1 U = K ,  U ( t 1 + 7, ( A  ) K ,  U ( t ) + x, ( A  K,u ( - t 
where q,, x, are given functions of A vanishing for A -+ A o ,  and  suppose that 

det( 
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Then, for any unit vector VIE R4, there is a bifurcating periodic solution with critical 
frequency w = 1 of (6). Alternatively, as in theorem 4, one can assume that there are 
three parameters A, and insert as an additional parameter the frequency w of the 
solution. 

Proof ( a  sketch). It suffices to observe that, operating by means of the Lyapunov- 
Schmidt method, the leading terms of the reduced equation are (7,J + 7,  K ,  + x , K , +  
x3K3)t?, and then apply lemmas 2 and 3 .  

Note of course that the presence of time inversion R actually destroys the covariance 
of the problem with respect to time translations, but that does not prevent from the 
existence of periodic solutions, and in fact generates them. 

9. On the reduction to normal forms 

As a final remark, let us point out another difference between the Hopf problem and  
the four-dimensional one considered in this paper. This deals with the problem of 
reducing the original equation into a 'normal form' (see [ 2 ] ) ,  namely of eliminating, 
by means of a change of variables, all terms of a given order k. As is well known [ 2 ] ,  
this elimination is possible provided that none of the quantities 

n 

u, - C ajui 
, = I  

is zero, where U, are the eigenvalues of the linear part, and  U, are n integer non-negative 
numbers such that Za, = k = the order of terms to be eliminated. 

In the Hopf case ( n  = 2 ,  U, = i i ) ,  it is known [ 2 ]  that, starting from a generic 
problem, one can-up to an arbitrarily large order-eliminate even-order terms and 
reduce odd-order terms to the form (U, u ) " ( a , l + b , J ) u ;  in this way one obtains as a 
by-product an  equation which exhibits in the new variables a 'spatial' SO, covariance 
(which is not to be confused with the intrinsic 'temporal' SO2 covariance: see [ 101 and 
0 4). 

Let us apply the same procedure to (6) ,  i.e. to a generic four-dimensional problem 
with double imaginary eigenvalues at the critical point: now, in (18) one has n =4 ,  
ui = +i. It is easily seen that all quadratic terms up, can be eliminated. Instead, a 
rapid calculation can show that not all cubic terms can be removed; precisely, using 
the rules given in [2], one sees that there are 12 independent terms, among the 2 0  
possible cubic terms, which cannot be removed. Among these, there are the four terms 
(U, U )  K,u, which transform as 'vectors' under the representation T of SU, already 
defined, but also other terms which do  not have this property. In conclusion, even at 
the third order, the reduction to normal form cannot transform the problem into a 
SU,-covariant problem. 
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